On Some Covering Properties of B-open sets

Belal .k. Nairat

Applied Sciences Private University

Amman-Jordan

1. Abstract

In this paper we introduce and study the concepts of b-open set, b-continuous functions, then we also study the concepts of b-compact subsets and study some new characterizations of b-separation axioms such as \(b-T_2 \). Then we discuss the relations between the b-continuous functions and these concepts.

Keywords

b-open set, b-compact, b-open cover, b-closed sets, b-continuous

2. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Levine [7] introduced the notion of semi-open sets and semi-continuity in topological spaces. Andrijevic [2] introduced a class of generalized open sets in topological spaces. Mashhour [9] introduced pre open sets in topological spaces. The class of b-open sets is contained in the class of semi-open and pre-open sets. In this paper we discuss the covering properties of b-sets and b-continuous functions. All through this paper \((X, \tau) \) and \((Y, \sigma) \) stand for topological spaces with no separation assumed, unless otherwise stated. The closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.

3. Preliminaries

Definition 3.1 A subset A of a space X is said to be [2],[10]:

1. Semi-open if \(A \subseteq \text{Cl}(\text{Int}(A)) \)
2. Pre open if \(A \subseteq \text{Int}(\text{Cl}(A)) \)
3. \(\alpha \)-open if \(A \subseteq \text{Int}((\text{Cl}(\text{Int}(A))) \)
4. \(\beta \)-open if \(A \subseteq \text{Cl}(\text{Int}(\text{Cl}(A))) \)
5. b-open if \(A \subseteq \text{Cl}(\text{Int}(A)) \cup \text{Int}(\text{Cl}(A)) \)
Definition 3.2. A function \(f : X \rightarrow Y \) is called

1. semi continuous if \(f^{-1}(V) \) is semi open in \(X \) for each open set \(V \) of \(Y \).

2. pre continuous if \(f^{-1}(V) \) is pre open in \(X \) for each open set \(V \) of \(Y \).

3. \(\alpha \)-continuous if \(f^{-1}(V) \) is \(\alpha \) -open in \(X \) for each open set \(V \) of \(Y \).

4. \(\beta \)-continuous if \(f^{-1}(V) \) is \(\beta \) -open in \(X \) for each open set \(V \) of \(Y \).

5. \(b \)-continuous if \(f^{-1}(V) \) is \(b \)-open in \(X \) for each open set \(V \) of \(Y \).

Definition 3.3 \([10]\) A space \(X \) is a \(b \)-T\(_2\) space iff for each \(x, y \in X \) such that \(x \neq y \) there are \(b \)-open sets \(U, V \subset X \) so that \(x \in U, y \in V \) and \(U \cap V = \emptyset \).

4. Covering Properties

Definition 4.1

Let \(\{G_\alpha : \alpha \in \Delta\} \) be a family of \(b \)-open sets of the space \(X \). the family \(\{G_\alpha : \alpha \in \Delta\} \) covers \(X \) if \(X \subseteq \bigcup_{\alpha \in \Delta} G_\alpha \).

Definition 4.2

A space \(X \) is called a \(b \)-compact space if each \(b \)-open cover of \(X \) has a finite subcover for \(X \).

Theorem 4.3

Let \(A \) be a \(b \)-compact subset of the \(b \)-T\(_2\) space \(X \) and \(\notin A \). then there exist two disjoint \(b \)-open sets \(U \) and \(V \) containing \(x \) and \(A \), respectively.

Proof :

Let \(y \in A \), since \(X \) is \(b \)-T\(_2\) space there exist two \(b \)-open sets \(U_x, V_y \in X \) such that \(x \in U_x, y \in V_y, U_x \cap V_y = \emptyset \), the family \(\bigcup \{A \cap V_y : y \in A\} \) is open cover of \(A \) has a finite subcover \(\{A \cap V_y_1, A \cap V_y_2, \ldots, A \cap V_y_n\} \), thus \(U = U_y_1 \cup U_y_2 \cup \ldots \cup U_y_n \).
Theorem 4.4

If \(X \) is b-T\(_2\) space and \(A \) is a b-open subset, if \(A \) is b-compact then \(A \) is a b-closed.

Proof:

Let \(x \in X - A \), by the theorem 4.3 there exist two b-open sets \(U \) and \(V \) such that \(x \in U, A \subseteq V, U \cap V = \emptyset \), thus \(x \in U \subseteq X - V \subseteq X - A \), which implies \(X - A \) is b-open so that \(A \) is b-closed.

Theorem 4.5

Let \(A \) and \(B \) be a two b-compact subsets of the b-T\(_2\) space \(X \), then there exist disjoint b-open sets \(U \) and \(V \) containing \(A \) and \(B \), receptively.

Proof:

Let \(b \in B \), since \(A \) is a b-compact subset and b-open in \(X \), there exist two b-open sets \(U_b, V_b \) such that \(U_b \cap V_b = \emptyset ; b \in V_b, A \subseteq U_b \), so \(\beta = \{ B \cap V_b; b \in B \} \) is a b-open cover of \(B \), since \(B \) is b-compact subset there exist finite subcover \(\{ B \cap V_m ; 1 \leq i \leq n \} \) from \(\beta \).

Let \(U = \bigcap_{i=1}^{n} U_{b_i}, V = \bigcup_{i=1}^{n} V_{b_i}, \) thus \(A \subseteq U, B \subseteq V, U \cap V = \emptyset \).

Theorem 4.5

Let \(f : (X, \tau) \rightarrow (Y, \rho) \) be a continuous surjection open function, if \(X \) is a b-compact then \(Y \) is a b-compact.

Proof:

Let \(\beta = \{ V_{\alpha} : \alpha \in \Delta \} \) be a b-open cover of \(Y \), then \(L = \{ f^{-1}(V_{\alpha}) : \alpha \in \Delta \} \) is a b-open cover of \(X \).since \(X \) is a b-compact space, there exist a finite subcover from \(L \) to the space \(X \) such that

\[
X \subseteq \bigcup_{i=1}^{n} f^{-1}(V_{\alpha_i}), \text{ thus } Y = f(X) \subseteq f\left(\bigcup_{i=1}^{n} f^{-1}(V_{\alpha_i}) \right) = f\left(f^{-1}\left(\bigcup_{i=1}^{n} (V_{\alpha_i}) \right) \right) = \bigcup_{i=1}^{n} (V_{\alpha_i})
\]

Hence \(Y \subseteq \bigcup_{i=1}^{n} (V_{\alpha_i}) \), this shows \(Y \) is a b-compact.
Corollary 4.6

B-compactness is a topological property

Proof:

The proof from theorem Theorem 4.5.

Definition 4.7:

A family of sets β has “finite intersection property” if every finite subfamily of β has a nonempty intersection.

Theorem 4.5

A topological space is compact if and only if any collection of its closed sets having the finite intersection property has non-empty intersection.

Proof:

Suppose X is b-compact, i.e., any collection of b-open subsets that cover X has a finite collection that also cover X. Further, suppose $\{G_\alpha : \alpha \in \Delta\}$ is an arbitrary collection of b-closed subsets with the finite intersection property. We claim that $\bigcap_{\alpha \in \Delta} G_\alpha \neq \emptyset$ is non-empty. Suppose otherwise, i.e., suppose $\bigcap_{\alpha \in \Delta} G_\alpha = \emptyset$. Then

$$\bigcup_{\alpha \in \Delta} (X - G_\alpha) = X - \left(\bigcap_{\alpha \in \Delta} G_\alpha \right) = X - \emptyset = X.$$ Since each G_α is b-closed, the collection $\{X - G_\alpha : \alpha \in \Delta\}$ is an b-open cover for X. By compactness, there is a finite subcover L such that

$$X = \bigcup_{i=1}^n (X - G_{\alpha_i}).$$ But then $\bigcap_{i=1}^n G_{\alpha_i} = \bigcap_{i=1}^n (X - (X - G_{\alpha_i})) = X - \left(\bigcup_{i=1}^n (X - G_{\alpha_i}) \right) = X - X = \emptyset,$ which contradicts the finite intersection property of $\{G_\alpha : \alpha \in \Delta\}$.

Conversely, take the hypothesis that every family of a b-closed sets in X having the finite intersection property has a nonempty intersection. we are to show X is compact. Let $\{G_\alpha : \alpha \in \Delta\}$ be any b-open cover of X. then $\{X - G_\alpha : \alpha \in \Delta\}$ is a family of b-closed sets such that $\bigcap X - G_\alpha = X - \left(\bigcup_{\alpha \in \Delta} G_\alpha \right) = X - X = \emptyset.$ Consequently, our hypothesis implies the family

$\{X - G_\alpha : \alpha \in \Delta\}$ does not have the finite intersection property. Therefore, there is some finite sub collection $\{X - G_{\alpha_i} : i = 1, 2, 3, \ldots, n\}$ such that $\bigcap_{i=1}^n X - G_{\alpha_i} = \emptyset$ and hence

$$X = \bigcup_{i=1}^n G_{\alpha_i} = \bigcup_{i=1}^n (X - (X - G_{\alpha_i})) = X - \left(\bigcap_{i=1}^n (X - G_{\alpha_i}) \right) = X - \emptyset = X.$$ Thus $X = \bigcup_{i=1}^n G_{\alpha_i}$, implying X is b-compact.
Acknowledgements

The author acknowledges Applied Science Private University, Amman, Jordan, for the fully financial support granted of this research article.

References

